## Renewable Energy – Module 3

What energy do we use for transport?

Could more of this be renewable energy?

Make a solar powered electric boat



# **Electric Boat**



# **Energy used in transport**

- About a quarter of our total energy is used in transport.
- About 90% of this comes from burning fossil fuels, causing climate change.
- Increasingly, people are using electric vehicles which include a large battery to store electricity.
- The electricity could be produced from renewable sources.







#### Make a solar powered electric boat





Copyright © Caroline Alliston 2025

## **STEM Learning Objectives**

- Science: Materials (give reasons for particular uses of everyday materials) and Forces (explore resistance in water by making and testing boats).
- Technology design, make and evaluate a product.
- Engineering understand propulsion, drag and streamlining.
- Maths measure distance and time, calculate average speed.



# Work Safely

# Look at the tools and equipment. Can you spot any potential hazards?



Can you think of ways to reduce the risks?



# **Collect your materials**

You will need:

- A solar energy kit (fairground ride completed in module 2)
- 2 sheets of polystyrene foam
- A propeller
- Pompoms to make passengers and/or decorations





## Assemble your tools

#### You will need:

- A ruler
- A felt tip pen
- A cylindrical pencil
- A pair of scissors
- A cool melt glue gun





# Set design criteria

Discuss what your boat should do

- It ought to float!
- Should it go in a straight line?
- Carry passengers?
- Any more ideas?
- Write a list of design criteria in your workbook.



# How will the boat work?

- What properties of the polystyrene foam sheet make it suitable for making a model boat?
- What force pulls the boat down onto the water?
- What force pushes the boat up?
- What happens if the force pulling it down is bigger than the force pushing it up?
- What will make the boat go along?
- What force slows the boat down?





# **Prepare the fan**

- 1. Carefully peel the motor stand off the base.
- 2. Keep the base for use in module 4.
- 3. Pull the motor pulley off the motor shaft and store it safely.
- 4. Replace it with the propeller.
- 5. Use the plastic spanner from the solar energy kit to loosen the nut slightly on the motor stand.
- 6. Turn the motor so the shaft is horizontal and re-tighten the nut.





## Design your boat

- Think about where the parts will go.
- How will you make sure the boat is balanced?
- The solar panel is very heavy how will you stop the boat sinking?
- What is streamlining?
- How could you get the boat to go in a straight line?
- Where will your passengers go?
- Sketch a design for your boat.



## **Construct your boat**

- Use the ruler and felt tip pen to mark out the parts for your boat base.
- 2. Check with an adult that your design looks feasible before you cut out the parts.
- 3. Glue the parts together.
- 4. Place the boat base on the cylindrical pencil. Adjust the position of the solar panel and fan to get the boat roughly balanced.





## Mount the solar panel and fan

- Work out how to mount your solar panel.
- It will work best if it is at right angles to the sun.
- You can use the angle you measured in module 1 or you can assume a default angle of 30°.
- Glue the fan stand and solar panel on so they don't fall in the water.



• Don't put too much glue on the solar panel as you can damage it, and you will need to peel it off the boat to use in module 4.



### Try out the boat

- Place the boat in the water tray or paddling pool.
- Hold on to it until you are sure it floats!
- Try out the boat with the solar panel facing the sun
- Does it meet your design criteria?
- Do you need to make any improvements?





## **Compare the boats' performance**

- Time how long it takes for each boat to travel the length of the paddling pool.
- 2. Compare the times.
- 3. Measure the distance travelled.
- 4. Divide the distance travelled by the time taken to work out the average speed.
- 5. Which boat goes fastest?







# Extension activity (optional)

- Remove the solar panel from the boat and disconnect the two motor contacts (put the nuts and washers back on so you don't lose them).
- Use two crocodile leads to connect the battery to the motor contacts.
- Check the fan is blowing air away from the motor – otherwise swap over the crocodile leads.
- Try out the boat compare the performance with that obtained using the solar panel.





# What did you learn?

- How much of our energy is used in transport?
- How is most of this energy produced?
- What is the problem with this?
- What forces act on a fan boat, and in which direction?
- Why is polystyrene foam sheet useful for making a model boat?
- Did you make any improvements to your boats?
- Which features of the fastest boats do you think helped them go faster?
- Which part of the activity did you enjoy the most?

